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SUMMARY

The complete gravitational disturbing function

R z In*
nr -P_(S)

r*n+l
n=2

is developed in the form

n w_ mZ
ntmt_p

h,q,j

a n (n - m) !

a*n+l Km (n+m)! Fnmp(i) Fnmh(i*) Hnpq (e) Gnhj (e*)

COS (n - 2p)c_ + (n - 2p + q)M - (n - 2h)w"

- (n-2h+j)M* + m(_-f2*)]

where the functions F, H, G are polynomials. This form is

advantageous for conserving computer storage space, mak-

ing changes in the terms included in the dislurbingfunction,

or including the luni-solar perturbations in the same com-

putation with perturbations due to anomalous variations of

the earth's gravitational field. A quasi-potential for the

solar radiation pressure effect is also deveIoped for use in

equations of motion written in terms of Keplerian elements.
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A DEVELOPMENT OF THE LUNAR AND

SOLAR DISTURBING FUNCTIONS

FOR A CLOSE SATELLITE

by

William M. Kaula

Goddard Space Flight Center

INTRODUCTION

Mathematical developments of the gravitational effects of the sun

and moon on a close satellite have been made by Musen, Bailie, and Upton

(Reference 1) and by Kozai (Reference 2). The developments presented

herein were made as a result of attempts to adapt the foregoing develop-

ments to a form convenient in analyzing close satellite orbits for terres-

trial gravitational field variations along the lines of Reference 3. In Refer-

ence 3 the disturbing functions are expressed in osculating Keplerian ele-

ments for use in equations of motion in those terms (such as in Reference

4, page 147, or Reference 5, page 289).

GRAVITATIONAL DISTURBING FUNCTION

The disturbing function has the form (Reference I, p. 3)

B = m" P.(S)
r,n+ I

a=2

where Pn(S) is the Legendre polynomial of S, the cosine of the angle be-

tweenthe position vectors of the satellite and the disturbing body with respect

1



to the earth, and where the parameters

signated by asterisks (a*, e', etc.).

of the disturbing body are de-

We define

m* r n

Rn - ]n_-I Pn(S) "
r

And by the addition theorem (from any text on spherical harmonics)

Rn _ m*r n Ip £ (n-m)!r'n+ 1 n(sin 8) Pn(sin _*) + 2 (n+m)!
m=l

Pnm(Sin _) Pnm(Sin _*)(cos met cos met* + sin ma sin ma*) 1

where Pnm(Sin S) is the associated Legendre polynomial of sin _.

tion 1, set

, (1)

In E qua-

and

m m* (n- m) I • •

An - *n+l Km " Pnm(Sin _ ) cos ma
r _n + m)!

m • (n- m) !
Bn _ m Km " Pnm(Sin S*) sin ma*

r*n+l (n +m)!

where K = i; K = 2, m _ 0.
o m

(2)

We apply to Equation 1 the same development as that given in Equations

7 through 18 of Reference 3:

_ n_ (n-m) even22R n = r n Fnmp(i) cos [(n- 2p)u + _/]

==o p=o _-B_(n_m) odd

[(n- 2p)u + m_]l ,

(3)

m_ (n-m) even

21 sin
A

[-- n--J(n-m) odd

where (from Equation 19, Reference 3)



± 2t, I COS
Fnmp(i) = t[(n- t)((n- m- 2t)r2 (2n'2t;sin(n-m'2t) si

t • "

_D

...4
---4

!

Z

 (o_o_2t s)(re_s)( c-k)

c p-t-c

in which k is the integral part of (n- m)/2; t is summed from 0 to the

lesser of p or k; s is summed from 0 to m; and c is summed over all

values making the binomial coefficients non-zero.

By applying to Equation g the same development as that in Reference 3,
we have

m m (n-m)!

An - r* 3 Km (n + m)

* (n m)m m -

B n K
"3 m (n+m)

r

F l "[<o-2 >u"+
Fnmh(i*) Lsin j

h=0 (n-m) odd

L-cosA
h= 0 (n-m) odd

(4)

Combining Equations 3 and 4, we have

Rn - m'r__n_ £ (n-m), £ £ {Km (n_--) Fnmp(i) Fnmh(i') cos [(n-2p)u + m_]r*n+l m !
m=O p=O h=O

cos [(n-2h)u* + m_*] + sin [(n- 2p)u + m_] sin [(n- 2h)u* + mr}*]}

m*r n _,
r*n+l

m=0

(n- m)! _ Fnmp(i) _, nm],l(1 ) COSF "" [(n-2p)u- (n-2h)u* + m(_-f_*)] .
Km (n+m)!

p=0 hffi0 (5)

Substituting n = Z in Equation 5 yields the same expressions given as Types

I through V, pages 5-6, Reference 1, and n = 3 as Types VI through XIII,

pages 6-9, Reference I. Since terms of index (m,p,h) = (o,p,h) will be

equal to terms of index (o, n - p, n - h) in Equation 5 above, in Bn there will

be a total of (n+ 1) 3 - I [(n+ 1)2/2] terms, where I [(n+ 1)2/2] is the in-
tegral part of (n+ 1)2//2.

To develop the disturbing function in terms of the mean anomaly of the
perturbed body, Hansen' s function

n, (n-2p)

X(n.2p+q) (e)

(Reference 4, pages 44-46; Reference 6, page Z56) may be used.
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cos [(n- 2p)co + (n- 2p + q)M - (n- 2h)u* + m(_-_')]The coefficient of is

n n, (n-2p)

anHnpq(e) = a X(n_2p+qte) . (6)

The only terms likely to be of significance are those of long period,

n- 2p +q = 0. An integration utilizing the true anomaly in a manner simi-

lar to Equations 23 and 24 of Reference 3 results in an infinite series which

does not converge for large eccentricities. However, Hansen's function

reduces to a fairly compact form:

anHnp(2p.n)(e) = anxn'(n'2P)(e)
0

an(__)(n-2p')(2n+l_2 ,)_k ln:l)<2p:+l> (_2k)
= (1 + fl2)(n+l) n - 2p' + k , (7)

\ n-2p k

_Z

tJ
!

o',

whe re

and

a

p = p, p < n/2; p = n-p, p > n/2

I+V/1- e 2

In terms of the mean anomaly of the disturbing body, for the coefficient of

the term cos [(n - 2p)u - (n - 2h)ca" - (n - 2h + j)M* + m(f/-f/*)] we have

1 1 -(n+l),(n-2h)

a'n+ 1 Gnhj(e* ) - a'n+ 1X(n_2h+j) (e*) (8)

for the short period terms, of which the form programmed is that given on

pages 8-9 of Reference 3 and page 256 of Reference 6; and

i Gn (e*) = 1 _ n-1 2d+ 2h'a.n+l hj (9)
a*n+l(1- e*2) n'l d=0 2d+n- 2h'

for the long period terms. Combining Equations 5, 6 or 7, and 8 or 9 finally

yields
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F_ n -= Ill an± ,rim,±
*n+l Km (n+ m)! Fnmp

o
m=O p=O

¢o

Gnhj(e*) cos [(n- 2p)cJ +

± 2(i) Fnmh(i*) Hnpq(e)
h=O q= -¢o

(n - 2p + q)M

(n-2h)co* - (n- 2h+j)M* + m(f)-f/*)] (10)

In Equation 10, R 2 is equivalent to Types aft 1 through af)5, on pages 12-

16 of Reference 1; and R3 to Types af) 6 through afll3 on pages 16-Z4 of

Reference 1. For practical purposes only the long period terms n- 2p + q= 0

are significant, in which case the summation with respect to q can be omitted

and Hnp(2p_n)(e) taken from Equation 7. Considering only the tong period
terms,

..2 (nm,±Rn = m Km " Fn
a *n÷l (n+m)! nap

m=O p=O

(i) Hnp(2p_n)(e)

Fnmh(i*) 2 Gnhj(e*) cos [(n- 2p)w - (n- 2h)w*

h=0 j=-_

- (n- 2h+ j)M* + m(_- _*)] (11)

In Equation 11, R2 is equivalent to air)] 1 through a[_] 5 on pages 25-27 of

Reference 1, and to the disturbing function of Reference 2; R3 is equivalent

to a[f?] 6 through a[f_] 13 on pages 27-31 of Reference 1. A singie term of

Rn is conveniently abbreviated as:

m'a n (n-m)!

Rnmphj - a,n+l gm (n+m)! Fnmp (i) Hnp(2p -n)(e) Fnmh(i*)

• Gnhj(e*) Tnmphj(_ , w*, M*, _, _*) . (12)

The quantities T'nmphj' Wnmphj' Tnmphj can be defined in the same manner as

the Snmpq , etc. on page 10 of Reference 3; i.e., primes denote derivatives

with respect to the argument, and overbars integrals with respect to time.

The Tnrnphj functions can be used with Fnmp(i) , Hnp(2p.n)(e) and their de-

rivatives, and with Fnmh(i*) and Gnhj(e*) , to obtain the variations of the



Keplerian elements in a manner similar to that applied with the harmonic

terms of the terrestrial gravitational field in Reference 3. For example,

the variation of the node due to a particular term Rnmph j given by Equation

IZ is

_nmphj

i* *
Km(n- m)! m*Fnmh( ) Gnhj(e )

(n + m)! a*n+l

2('_Pnmp(i))an- \ _i Hnp(2p_n)(e ) Tnmphj(Cd, co*, M*, f2, _*)

n V_ - e2 sin i

(13)

All the significant first order lunar-solar effects thus can be obtained by

using the disturbing function given by Equation l I in the equations of motion

(Reference 4, page 147; Reference 5, page Z89) and integrating with respect

to time. This procedure is obviously advantageous when we desire to con-

serve programming time or computer storage space, since all the lunar-

solar perturbations can be programmed as a single "nest of DO-loops" and

the same instructions are used for every term, with only the values of the

subscripts n,m,p,h,j changed. It also is convenient to alter the number of

terms to be included, since this change can be made by changing the range

of values over which the subscripts n,m,p,h,j are to be cycled in their re-

spective "DO-loops." Finally, it is a convenient form to include in the same

orbit computation with terrestrial gravitational effects, since the forms of

the equations, such as Equation 13, are very similar, and the subroutines

required to obtain Fnmh(i*) , Gnh j (e*) , Fnmp(i) , 3Fnmp(1)/_i are exactly

the same as for the terrestrial gravitational effects, while Hnp(2p-_)(e) and
Tnmph j and their derivatives are very similar to Gnp(2p.n)(e) and nmpq and
their derivatives. A subroutine has been written computing the luni-solar

secular effects plus all periodic terms of amplitude greater than a minimum

specified in the input. This program requires only 943 spaces of core stor-

age, by utilizing subroutines for Fnmp(i), Gnpq(e) and their derivatives
which are also required for terrestrial gravitational effects.
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RADIATION PRESSURE DISTURBING FUNCTION

If any force affecting an orbit can be expressed as the gradient

of a scalar, then this effect can be represented by a disturbing potential R.

This is true for radiation pressure if the shadow effect is neglected, since

the radiation pressure can be represented with negligible error as the gra-

dient of Rp = FX, F < 0, where X is the coordinate of the satellite in an
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earth-centered system with the X axis pointed toward the sun. To obtain

Rp in a coordinate system referred to the satellite's own orbit, apply the

appropriate rotation matrices to q = {r cos f, r sin f, o}T:

Rp = F {1,0,0} Ra(K') Ill(E) P_(-f_) Rl(-i) l_(-co)q

= Fj P%Qq ,

(14)

where K* is the true longitude of the sun, e is the inclination of the ecliptic,

and the rotation matrices Rl(El.) are defined in Reference 3, pages 19-ZI.

By multiplying out Equation 14, combining terms by appropriate transfor-

mation of the inclination functions, and integrating with respect to M we ob-

tain the long period part of Rp:

3ae f 2 i e ,
Bp = -F--_- \+ cos -_-sin 2 _ cos (co + _ + N )

i 2 _ N"
+ cos 2 _ cos _ cos (_ + N- )

i 6

+ sin 2 -_ cos 2 _ cos (co - f) + k*)

+ sin 2 _ sin 2 _ cos (co - f_ - k °)

- _1 sin i sin 6 cos (co + X*)
2

1 }+ _- sin i sin E cos (co- k') (15)

The Bp from Equation 15 may be used in the equations of motion (Reference

4, page 147; Reference 5, page 289)to obtain the same results as those in

Reference 7.

If the shadow is taken into account, it is impossible to devise a quasi-

potentiai. Such a quasi-potential would have to be constant within the shadow

and proportionate to X outside the shadow. Since X at the entry point to the

shadow will generally not be equal to X at the exit point, such a potential

will unavoidably give rise to a spurious impulse normal to the shadow bound-

ary at either the entry point, exit point, or both. Hence the integration from

exit point to entry point to allow for shadow effect must be made after Rp,

including short period terms, has been differentiated, i.e.,
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_l _Rp
! dM
2_ ?E l.

o

must be used in the equations of motion, where M0 and M I represent the

mean anomaly at exit and re-entry respectively and where El. denotes any

one of the orbital elements. For example, for the semi-major axis

M M

da 1 f13Rp FJRsQ fM 1 aqdt an_ _--_ dM = ----- - anw _-_ dM
MO 0

!

Cr,

cos E

FjHSQ e 2
nw 1 - s i n

0 E o

(16)

where E0 and E l are obtained by solution of the quartic equation for the

intersection of the shadow by the orbit, as described in References 8 and 9.

In the notation of this paper, the quartic to be solved by iteration is

x -- j Qq -- - Jr 2 - ao2

or

1

rl,la(cos E- e) + rl,2a(1- e2) _ sin E -- - _a2(1- e cos E) 2 - a:

where rl, 1 and rl,2 are elements of RsQ and a e is the radius of the earth.

Since E 0 and E 1 are functions of N*,_, and cz, their time variation due

to change in these angles must be taken into account before Equation 16 is

integrated. In view of the intervention of the quartic, a numerical harmonic

analysis appears to provide the best method. The program which has been

written specifies as input F, the orbital elements at a reference epoch, and

the interval for harmonic analysis, and produces as output a Fourier series

of any specified number of terms for the variations of the Keplerian ele-

ments.
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Fnmp(i),

a

e

E

Fnmh(i ° )

F

f

Gnhj(e ° )

Hnpq(e)

h

i

J

J

k

K
m

k °

M

APPENDIX A

List of Symbols

semi-major axis of satellite orbit

right ascension

declination

eccentricity

inclination of the ecliptic

eccentric anomaly

inclination polynomials, defined by Equation 19, Refer-

ence 3 (or by unnumbered equation, Page 3, TN D-I126)

radiation pressure acceleration

true anomaly

disturbing body eccentricity polynomial, defined by

Equations 21, 24, Reference 3 (or Equations 8, 9,

TN D-1126)

satellite eccentricity polynomial, de/ined by Equations

6, 7, TN D-11£6

disturbing body inclination subscript

angle of inclination to equatorial plane

disturbing body eccentricity subscript

unit vector (1,0,0}

integral part of (n-m)/2

2 for m _ 0, I for m = 0

true longitude of the sun

mean anomaly

mass of disturbing body

Z

U
!

Ox





,,O
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Z

m

60

p

Pn

Pnm

q

R

Bp

S

Tnmph j =

X

ab
X (e)

c

II

order subscript, or secondary wave number, of

spherical harmonic

degree subscript, or primary wave number, of

spherical harmonic

right ascension of ascending node

argument of perigee

satellite inclination subscript

Legendre polynomial

Legendre associated polynomial

satellite eccentricity subscript

disturbing function

radiation pressure quasi-disturbing function

radial coordinate

position vector

the cosine of the angle between the position vectors of

the satellite and the disturbing body with respect to the

earth's center

cos [(n-2p)co- (n- 2h)ca* - (n-2h+j)M* + m(fl-f/')] :

variable part of a term in the disturbing function

argument, _ + f

satellite coordinate in a geocentric coordinate system

with the X axis pointing toward the sun

HansenWs eccentricity function (defined by Equation 21,

Reference 3)
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